Symmetric Boundary

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
11 seconds
1024 megabytes

Symmetrical figures are beautiful-and they are the subject of this task. A region in a 2D plane is convex if, for every pair of points p and q in the region, the segment connecting p and q is entirely included in the region. Also, a region in a 2D plane is point-symmetric if, when you rotate the region by 180 degrees around a certain point, the rotated region exactly matches the original region.
You are given a convex polygon in a 2D plane with n vertices, numbered from 1 to n in counterclockwise order. Vertex i has coordinates $\left(x_{i}, y_{i}\right)$. No three vertices are collinear. Determine whether there exists a convex, point-symmetric region containing all of the n vertices on its boundary. If one or more such regions exist, compute the minimum area among all of them.

Input

The first line of input contains one integer $n(3 \leq n \leq 30)$. Each of the next n lines contains two integers. The i-th line contains x_{i} and $y_{i}\left(0 \leq x_{i}, y_{i} \leq 1000\right)$.

It is guaranteed that the given polygon is convex, its vertices are given in counterclockwise order, and no three of its vertices are collinear.

Output

If one or more such regions exist, output the minimum area among all of them. The relative error of the output must be within 10^{-9}.

If such a region does not exist, output -1 instead.

Examples

standard input	standard output
4	90.0
00	
100	
89	
49	
8	-1
810	
29	
08	
02	
20	
80	
102	
108	
6	486567.9669655848
23177	
35920	
829124	
998461	
941735	
879825	

Note

Explanation for the sample input/output
Figure 1 illustrates the vertices in the sample input as black dots. For sample inputs $\# 1$ and $\# 3$, the shaded regions represent the regions with the minimum possible area.

Рис. 1: Illustrations of the sample inputs (from left to right).

