XOR Operations

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 megabytes

You are given n integers $a_{1}, a_{2}, \ldots, a_{n}$. You have a sequence of n integers $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ which initially are all zeroes.
In one operation, you choose two different indices i and j, then simultaneously

- replace b_{i} with $b_{i} \oplus a_{i} \oplus a_{j}$, and
- replace b_{j} with $b_{j} \oplus a_{i} \oplus a_{j}$.

Note that \oplus represents the bitwise XOR operation, which returns an integer whose binary representation has a 1 in each bit position for which the corresponding bits of either but not both operands are 1. For example, $3 \oplus 10=9$ because $(0011)_{2} \oplus(1010)_{2}=(1001)_{2}$.
You want to compute the number of different possible sequences B you can obtain after performing zero or more operations. Since this number might be huge, calculate this number modulo 998244353.

Two sequences of length n are considered different if and only if there exists an index $i(1 \leq i \leq n)$ such that the i-th element of one sequence differs from the i-th element of the other sequence.

Input

The first line of input contains one integer $n(2 \leq n \leq 200000)$. The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i}<2^{30}\right.$ for all $\left.i\right)$.

Output

Output an integer representing the number of different possible sequences B you can obtain after performing zero or more operations modulo 998244353.

Examples

standard input		standard output	
3	2	1	4

Note

Explanation for the sample input/output \#1
Starting from $B=(0,0,0)$, we can obtain the following two sequences B :

- Perform the operation with $i=1$ and $j=2$. We will have $B=(3,3,0)$.
- After that, perform the operation with $i=2$ and $j=3$. We will have $B=(3,0,3)$.

Starting from $B=(0,0,0)$, we can also obtain the following sequence B :

- Perform the operation with $i=2$ and $j=3$. We will have $B=(0,3,3)$.

It can be shown that $(0,0,0),(3,3,0),(3,0,3)$, and $(0,3,3)$ are the only possible sequences B you can obtain. Therefore, the answer is 4 .

This page is intentionally left blank.

